partially s-embedded minimal subgroups of finite groups

Authors

tao zhao

qingliang zhang

abstract

suppose that $h$ is a subgroup of $g$‎, ‎then $h$ is said to be‎ ‎$s$-permutable in $g$‎, ‎if $h$ permutes with every sylow subgroup of‎ ‎$g$‎. ‎if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|‎, ‎|h|)=1$)‎, ‎then $h$ is called an $s$-semipermutable subgroup of $g$‎. ‎in this paper‎, ‎we say that $h$ is partially $s$-embedded in $g$ if‎ ‎$g$ has a normal subgroup $t$ such that $ht$ is $s$-permutable in‎ ‎$g$ and $hcap tleq h_{overline{s}g}$‎, ‎where $h_{overline{s}g}$‎ ‎is generated by all $s$-semipermutable subgroups of $g$ contained in‎ ‎$h$‎. ‎we investigate the influence of some partially $s$-embedded‎ ‎minimal subgroups on the nilpotency and supersolubility of a finite‎ ‎group $g$‎. ‎a series of known results in the literature are unified‎ ‎and generalized.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

partially $s$-embedded minimal subgroups of finite groups

suppose that $h$ is a subgroup of $g$‎, ‎then $h$ is said to be‎ ‎$s$-permutable in $g$‎, ‎if $h$ permutes with every sylow subgroup of‎ ‎$g$‎. ‎if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|‎, ‎|h|)=1$)‎, ‎then $h$ is called an $s$-semipermutable subgroup of $g$‎. ‎in this paper‎, ‎we say that $h$ is partially $s$-embedded in $g$ if‎ ‎$g$ has a normal subgroup $t$ such that $ht...

full text

finite groups with some ss-embedded subgroups

we call $h$ an $ss$-embedded subgroup of $g$ if there exists a‎ ‎normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and‎ ‎$hcap tleq h_{sg}$‎, ‎where $h_{sg}$ is the maximal $s$-permutable‎ ‎subgroup of $g$ contained in $h$‎. ‎in this paper‎, ‎we investigate the‎ ‎influence of some $ss$-embedded subgroups on the structure of a‎ ‎finite group $g$‎. ‎some new results were obtained.

full text

On weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups

Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...

full text

finite groups whose minimal subgroups are weakly h*-subgroups

let $g$ be a finite group‎. ‎a subgroup‎ ‎$h$ of $g$ is called an $mathcal h $ -subgroup in‎ ‎$g$ if $n_g (h)cap h^gleq h$ for all $gin‎ ‎g$. a subgroup $h$ of $g$ is called a weakly‎ $mathcal h^ast $-subgroup in $g$ if there exists a‎ ‎subgroup $k$ of $g$ such that $g=hk$ and $hcap‎ ‎k$ is an $mathcal h$-subgroup in $g$. we‎ ‎investigate the structure of the finite group $g$ under the‎ ‎assump...

full text

finite groups with some $ss$-embedded subgroups

we call $h$ an $ss$-embedded subgroup of $g$ if there exists a‎ ‎normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and‎ ‎$hcap tleq h_{sg}$‎, ‎where $h_{sg}$ is the maximal $s$-permutable‎ ‎subgroup of $g$ contained in $h$‎. ‎in this paper‎, ‎we investigate the‎ ‎influence of some $ss$-embedded subgroups on the structure of a‎ ‎finite group $g$‎. ‎some new results were obtained.‎

full text

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

full text

My Resources

Save resource for easier access later


Journal title:
international journal of group theory

Publisher: university of isfahan

ISSN 2251-7650

volume 2

issue 4 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023